

CALCULUS III

MATH 20550 , SECTION 04

Marianna Russkikh
mrusskikh@nd.edu
126 Hayes-Healy

tentative:

Sep 23

Oct 30

Nov 20

Dec 17

Exam 1

20%

Exam 2

20%

Exam 3

20%

Final

30%

Tutorials

5%

Thursdays

← Attendence is mandatory

Webassign
(Homework) 5%

Read Syllabus
on Canvas

Office Hours: Tue 2-3
126 HH Wed 2-3

Make sure you go
to tutorials you
registered for

≥ 94 %

A

≥ 84 %

A-, B+, B

≥ 74 %

B-, C+, C

≥ 60 %

C-, D

Lectures: MWF 11:30-12:20

- You are expected to attend all lectures

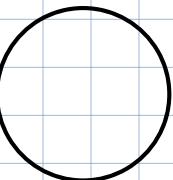
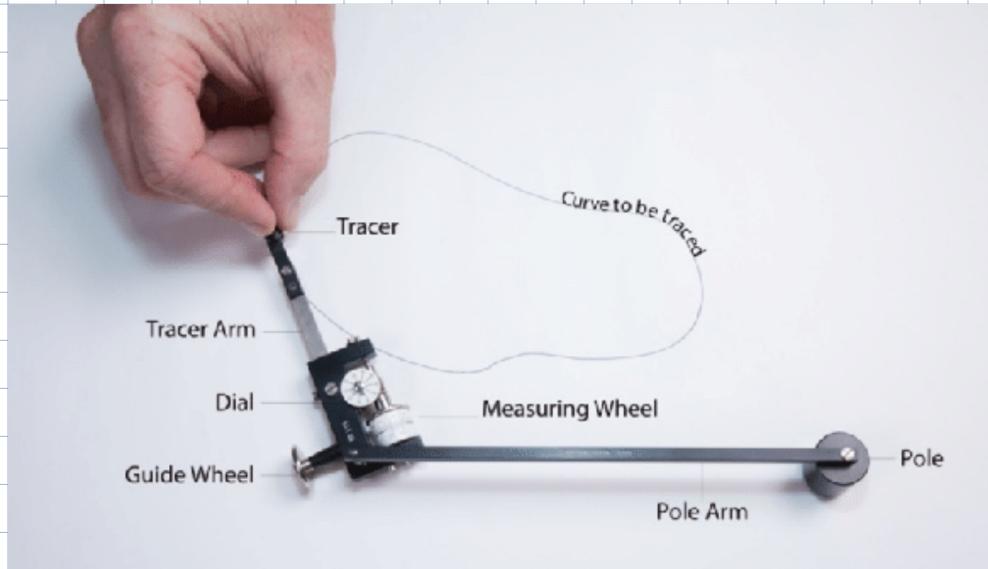
Motivation:

Polar Planimeter

-measures the area by just going around the perimeter

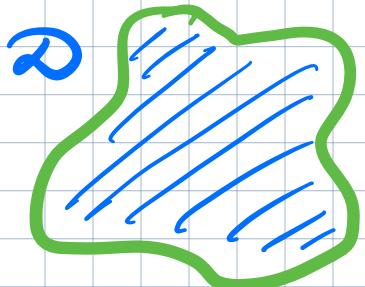
Q:

 vs



A: It takes in account how the angle changes when go around.

Green's Thm:

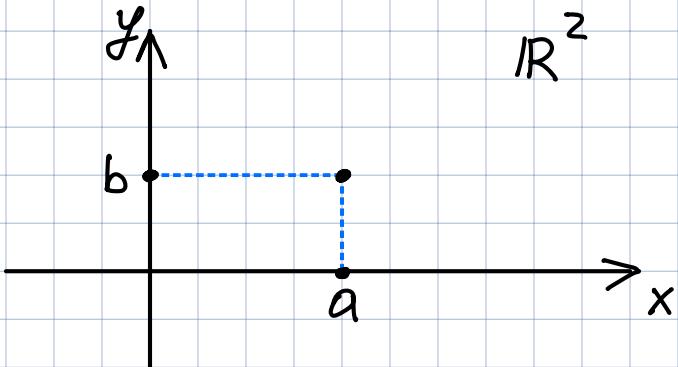


$$\oint_{\partial D} (L \, dx + M \, dy) = \iint_D \left(\frac{\partial M}{\partial x} - \frac{\partial L}{\partial y} \right) dA$$

Three-dimensional coordinate system

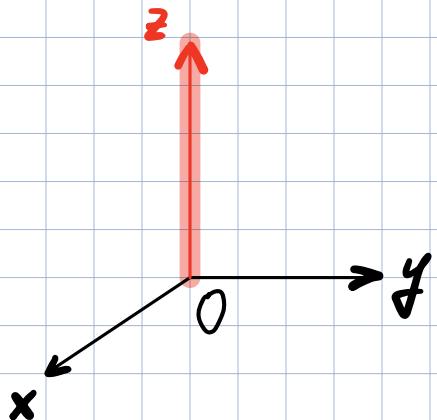
Reminder: A point on a plane is given by a pair of numbers

(a, b)
x-coordinate y-coordinate



- A point in space (\mathbb{R}^3) is given by triple of numbers

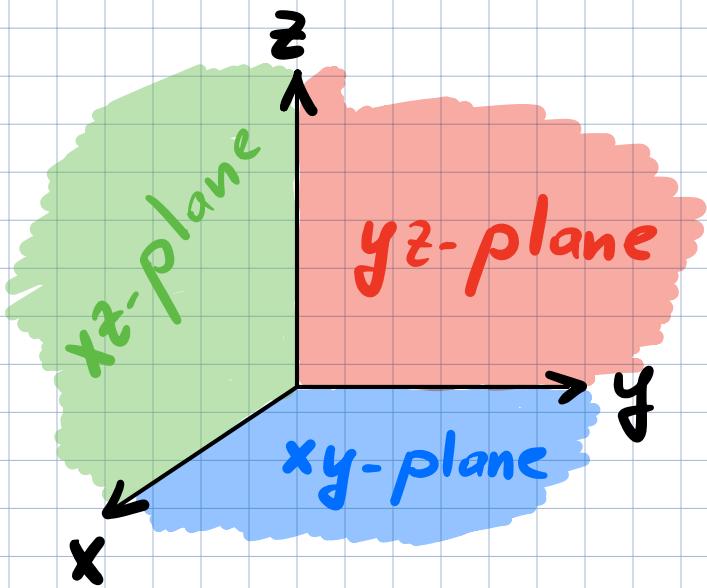
(a, b, c)
x-coord. y-coord. z-coordinate



the direction of the z-axis is determined by the right-hand-rule

- Choose a fixed point O (the origin) and 3 directed, mutually perpendicular lines through O :

x-axis
y-axis
z-axis

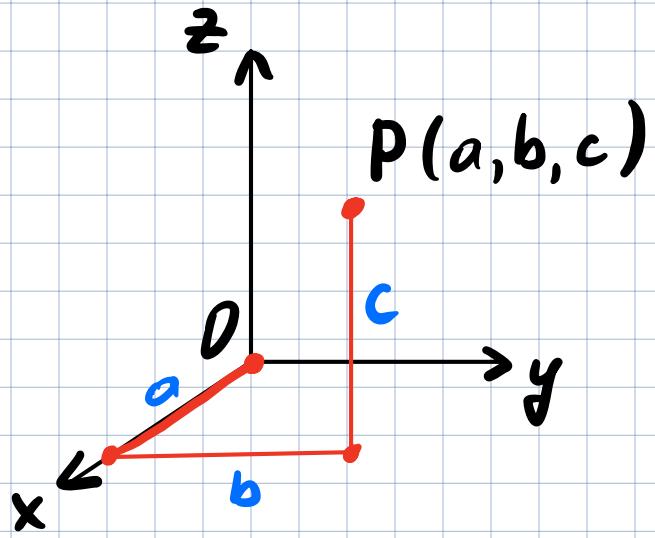


- Coordinate axes determine coordinate planes:

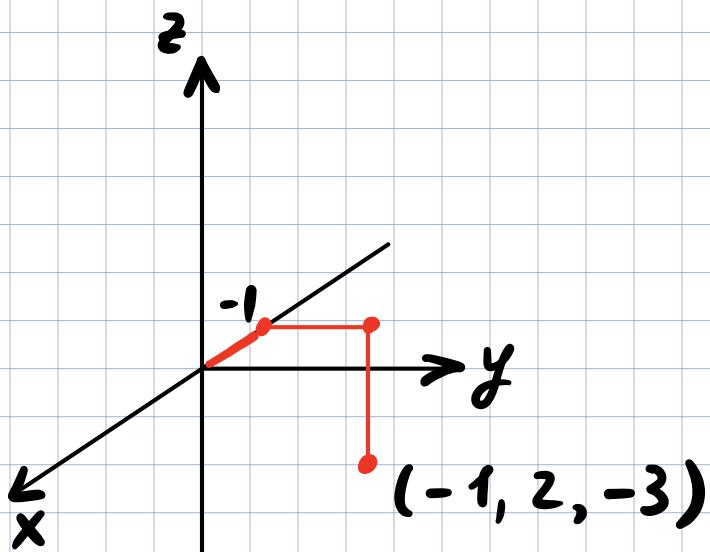
xy-plane
yz-plane
xz-plane

- Coordinate planes divide space into 8 octants

1st octant = all points (a, b, c)
with $a, b, c > 0$

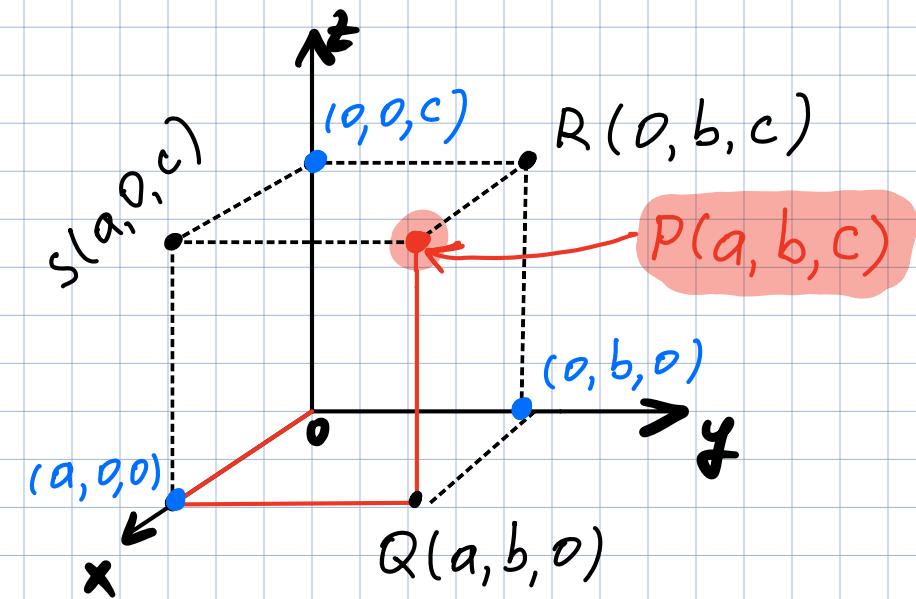


- a is the (directed) distance from P to the yz -plane
- b is the (directed) distance from P to the xz -plane
- c is the (directed) distance from P to the xy -plane



NB: coordinates can be negative!

The point $P(a, b, c)$ determines a rectangular box:



- $Q(a, b, 0)$ is the projection of P onto xy -plane
- $R(0, b, c)$ is the projection of P onto yz -plane
- $S(a, 0, c)$ is the projection of P onto xz -plane

Surfaces

On \mathbb{R}^2 , graph of an equation

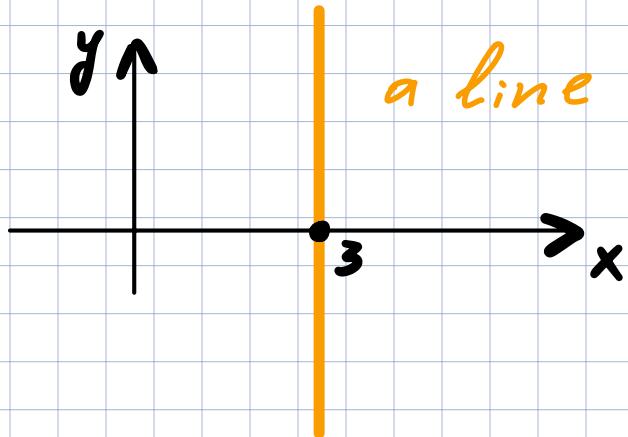
involving x, y represents a **curve** in \mathbb{R}^2

In \mathbb{R}^3 , an equation involving x, y, z

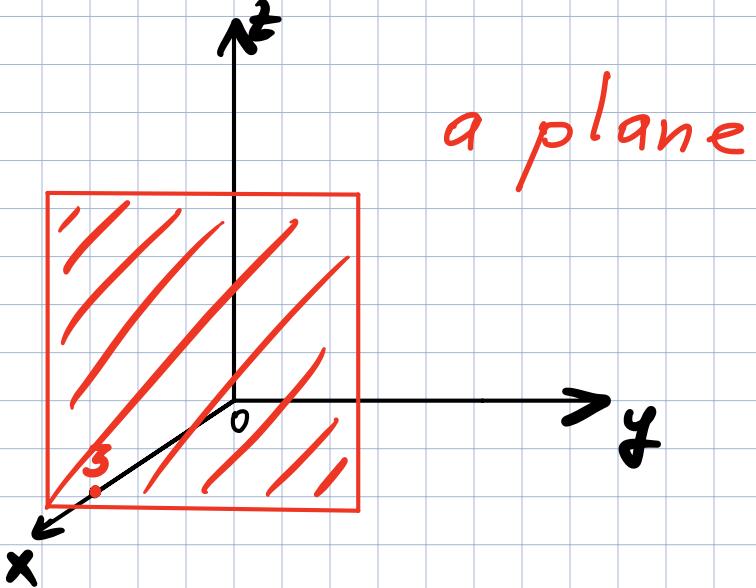
represents a **surface** in \mathbb{R}^3

Ex:

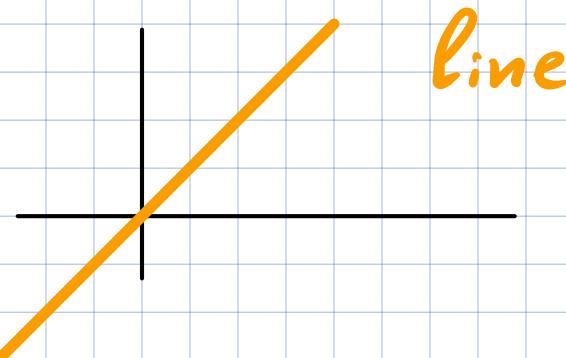
$$\{(x, y) \mid x = 3\}$$



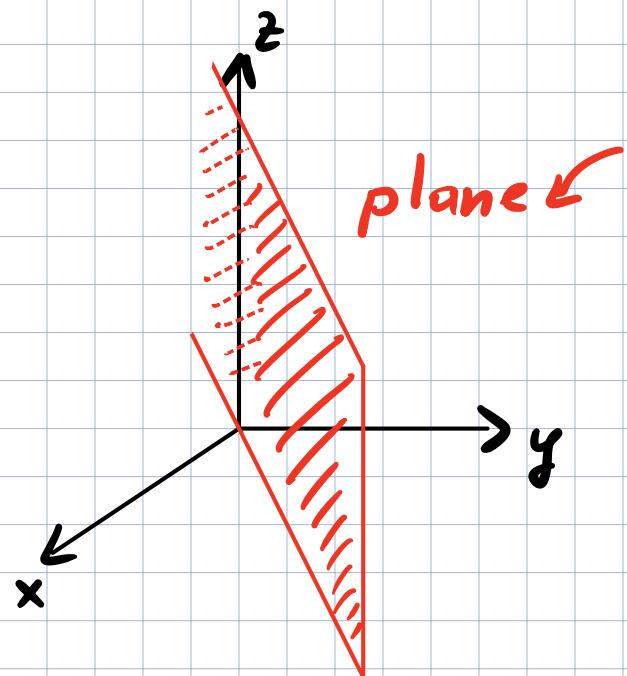
$$\{(x, y, z) \mid x = 3\}$$



Ex: In \mathbb{R}^2 : $x = y$



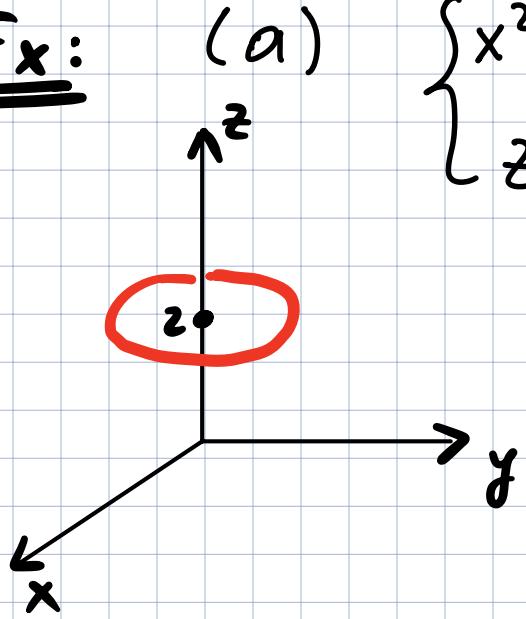
In \mathbb{R}^3 : $x = y$



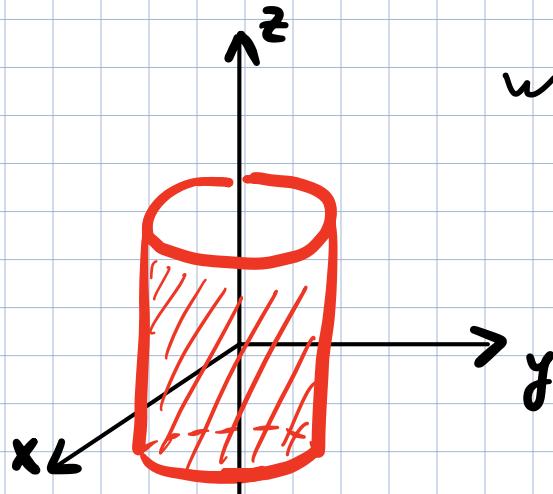
vertical (i.e. perpendicular to xy -plane)
and intersecting it in
the line $\begin{cases} z = 0 \\ x = y \end{cases}$

Ex: (a) $\begin{cases} x^2 + y^2 = 1 \\ z = 2 \end{cases}$

circle of radius 1
centered on z-axis
in the horizontal plane $z=2$



(b) $x^2 + y^2 = 1$ - cylinder of rad. 1
whose axis is z-axis



On \mathbb{R}^2 : distance between
 $P(x_1, y_1)$ and $Q(x_2, y_2)$

is

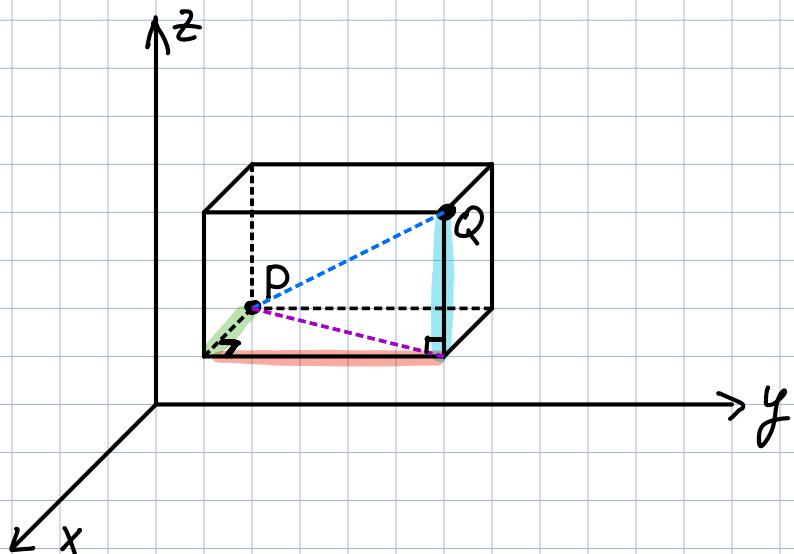
$$|PQ| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

In \mathbb{R}^3 :

$P(x_1, y_1, z_1)$ $Q(x_2, y_2, z_2)$

$$|PQ| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Distance:



Ex: $P(0, 1, -2)$ $Q(1, 3, 0)$

$$|PQ| = \sqrt{(1-0)^2 + (3-1)^2 + (0-(-2))^2} = \sqrt{1+4+4} = 3$$

A sphere of radius R with center $P(a, b, c)$
is given by equation

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2$$

Rmk: In case $P=O$: $x^2+y^2+z^2=R^2$

Ex: Show that the equation

$$x^2+y^2+z^2+4x-6y+2z+6=0$$

defines a sphere; find it's radius and center.

$$\begin{aligned} & \underbrace{x^2+4x}_{x^2+2\cdot 2x+2^2} + \underbrace{y^2-6y}_{y^2-2\cdot 3y+3^2} + \underbrace{z^2+2z}_{z^2+2z+1^2} = -6 \\ & (x+2)^2 + (y-3)^2 + (z+1)^2 = 4+9+1-6 \\ & (x-(-2))^2 + (y-3)^2 + (z-(-1))^2 = 8 \end{aligned}$$

$$P(-2, 3, -1)$$

$$R = \sqrt{8} = 2\sqrt{2}$$

Ex: Which of the points $P(4, -2, 6)$ and $Q(-6, -3, 2)$ is closest to yz -plane?

Sol.:

1) The shortest distance between any point and any of the coordinate planes will be the distance between that point and its projection onto that plane.

2) Let's call the projections of P and Q onto the yz -plane \bar{P} and \bar{Q} respectively. Then

$$\bar{P} = (0, -2, 6) \text{ and } \bar{Q} = (0, -3, 2)$$

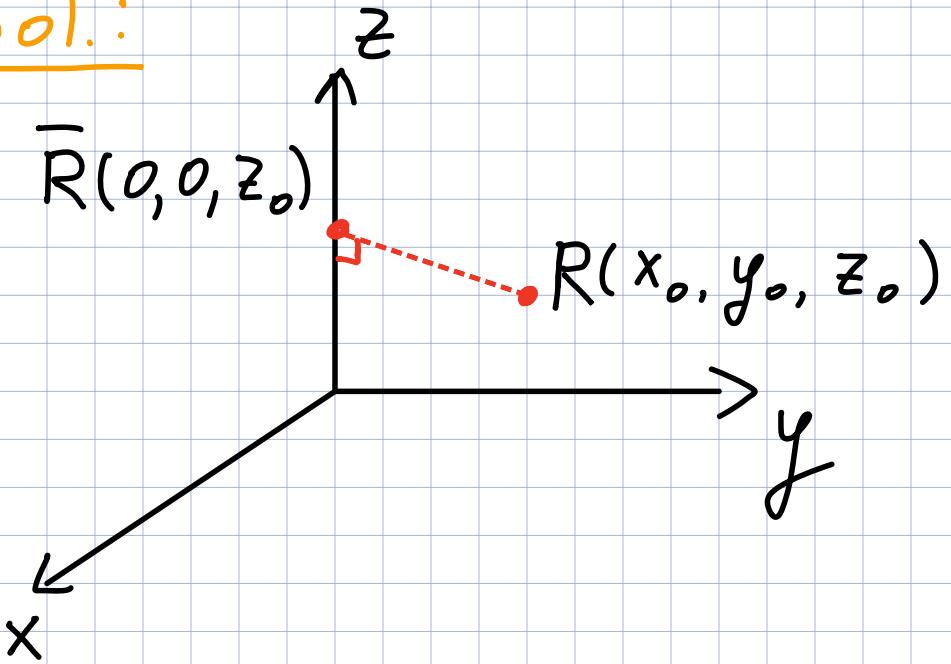
$$3) |\bar{P}\bar{P}| = \sqrt{(4-0)^2 + (-2-(-2))^2 + (6-6)^2} = 4$$

$$|\bar{Q}\bar{Q}| = \sqrt{(-6-0)^2 + (-3-(-3))^2 + (2-2)^2} = 6$$

$\Rightarrow P$ is closest to yz -plane.

Ex: Which of the points $P(-1, 4, -7)$ and $Q(6, -1, 5)$ is closest to the z -axis?

Sol.:



$$|\overline{R\bar{R}}| = \text{dist}(R, z\text{-axis})$$

$$1) \bar{P} = (0, 0, -7)$$

$$\bar{Q} = (0, 0, 5)$$

$$2) |\overline{P\bar{P}}| = \sqrt{(-1-0)^2 + (4-0)^2 + (-7-(-7))^2} = \sqrt{17}$$

$$|\overline{Q\bar{Q}}| = \sqrt{(6-0)^2 + (-1-0)^2 + (5-5)^2} = \sqrt{37}$$

3) $\Rightarrow P$ is closest to the z -axis.